GDR Micro Nano Fluidique

Offres d'emploi

THÈSE Chip nanocalorimetry embedded into microfluidic devices for biomaterials

Déposé le : 20/06/2014


General framework:

A general paradigm of biology is that the function and the structure are intimately linked.
A particular protein has a given function because of its 3D shape. The possibility to predict the 3D shape of a particular amino acid sequence would allow building proteins with specific functions thus enabling the possibility to design very efficient drugs. Because of the intrinsic complexity of the amino acid interactions it has not yet been possible to predict or create proteins with predictable shapes and functions. Using DNA this is now possible such as illustrated in.
To design complex structures, potentially with biological and computing functions we need to characterize how the folding of these objects takes place. We propose to investigate the thermodynamic properties of these systems by developing an on-chip-nanocalorimeter that can be imbedded into innovative microfluidic devices.

[1] P. W. K. Rothemund, Nature, vol. 440, no. 7082, pp. 297–302, Mar. 2006.
[2] M. Langecker, V. Arnaut, et al. Science, vol. 338, no. 6109, pp. 932–936, 2012.


Exact topic:

Our approach is experimental and the candidate will develop a chip calorimeter based on ultrasensitive thermometry and innovative microfluidics based on parylene thin film. The thermal fluid management need to be developed in order to achieve the best resolution possible. This will reduce the cost of material synthesis and the experimental time. We target to achieve the detection of power of the order of the nW in volume of few microliters. Model systems like the complex CBS-CAII, DNA duplexes or enzymes and their substrates will be used to evaluate and compare the performances of the instrument with existing systems. The candidate will gain state of the art knowledge in microfabrication technologies, microfluidics, instrumentations, thermodynamics of small systems and DNA nanotech.

Interactions and collaborations:
This project is based on well recognized know how in ultimate calorimetry in the team. It is also based
on collaborations with collegues specialized in DNA nanotechnologies, in SCIB-INAC CEA Grenoble
with Dr. D. Gasparutto, LIMMS Tokyo (Japan) with Dr. Y. Rondelez, and LAAS Toulouse (France)
with Dr. A. Genot.
Formation / proficiencies:
We seek a candidate with a background in physics willing to realize innovative instrumental
developments. Knowledges in low noise electronics, microfluidics, microtechnologies, DNA nanotech
are a plus but are not required.
Start of the PhD: Fall 2014
Contact : Guillou Hervé and Olivier Bourgeois

Institut Néel – CNRS : 04 76 88 12 10 ;
Plus d’informations sur :

THÈSE Réalisation microfluidique d’une toupie acoustique pour le tri cellulaire

Déposé le : 04/06/2014


DRT : Sujet de thèse SL-DRT-14-0079

Domaine de recherche

Mécanique, énergétique, génie des procédés, génie civil / Sciences pour l’ingénieur

Résumé du sujet

Le DTBS a récemment mis en évidence la possibilité de faire tourner des micro particules (billes, cellules, bactéries…) au moyen d’ondes acoustiques ultrasonores en canal microfluidique. Ce phénomène, encore imparfaitement compris, est sensible au type cellulaire de la cible. En particulier en biologie, ce mécanisme pourrait permettre de sonder dynamiquement et avec différentes échelles de temps, la mécanique cellulaire.

En effet, il existe un lien avéré entre l’état mécanique d’une cellule, caracttérisé par son comportement visco-élastique et son état physiologique. En conséquence, un tel dispositif permettrait, au sein d’une population cellulaire donnée, d’identifier les cellules pathogènes ou non, et cela sans marquage spécifique, sans contact, et sans altération de la viabilité cellulaire.

Au cours de cette thèse, nous proposons de caractériser pleinement ce phénomène dans le but de réaliser un véritable trieur cellulaire (en taille et en élasticité) à la fois non intrusif et permettant de cribler rapidement de larges populations cellulaires à des fins médicales.

Nous rapprocherons cette technique de son analogue électrique (« électrorotation ») afin d’étudier comment ces deux techniques peuvent être implémentées sur une même puce fluidique dans le but de remonter à la fois aux caractéristiques mécaniques et électriques des cellules.

Cette thèse très pluridisciplinaire est à forte dominante expérimentale, avec un volet théorique indispensable.

Formation niveau Master recommandé

Master 2 Recherche avec formation généraliste.

Informations pratiques

Département Microtechnologies pour la Biologie et la Santé (LETI)
Service Bio-System on Chip
Laboratoire Biologie et Architecture Microfluidiques
Centre : Grenoble
Date souhaitée pour le début de la thèse : 01/10/2014

Personne à contacter par le candidat

CEA Grenoble
Téléphone : 04 38 78 15 08

Université / Ecole doctorale

Paris 6 Pierre-et-Marie-Curie
Sciences Mécaniques, Acoustique et Electronique et Robotique de Paris (SMAE) – Paris VI –

Directeur de thèse

Ecole Normale Supérieure de Cachan / UPMC:
Institut Jean le Rond d’Alembert
Université Pierre et Marie Curie
Boîte162, Tour 55-65,
4 place Jussieu, 75252 Paris Cedex 05.

POSTDOC Biomanufacturing of the Cell Mechanical Environment

Déposé le : 28/05/2014


(Ref. ZAP-2013-187)

Occupation : Full-time
Place : Leuven
Apply no later than : June 30, 2014
In the Science, Engineering & Technology Group, Faculty of Engineering Science, Department of Mechanical Engineering at KU Leuven there is a full-time vacancy among senior academic staff in the area of biomanufacturing. We are looking for internationally oriented candidates with an excellent research record in biomanufacturing and with educational competence within the field of biomedical engineering.Mechanical Engineering, being one of the oldest engineering disciplines, is showing more vitality than ever before. Questions on the sustainability of energy supply, the mobility problem in our main agglomerations, healthcare for an ageing population, and safeguarding our welfare by continuing industrial innovation, point to the major challenges our society is facing. The Mechanical Engineering department is already ‘making’ the future by creating solutions fulfilling the needs of our future society. We do this by addressing these challenges in research but perhaps even more by preparing the future generations of engineers. An educational programme with emphasis on research-driven problem solving in socio-economic relevant fields is our major lever to a better future. The department has a staff of about 250 strong, including 24 full-time professors, and over 400 third year bachelor and master students. The department is involved in a large number of research projects and is also well connected to the industry interfaces of the university and to government-sponsored technology transfer institutes at Flemish and European level. Over the years, the department has accumulated a unique research infrastructure supporting our research. The department is particularly active in spin-off creation, which is illustrating the socio-economic relevance of our research. Many of these spin-offs are technology leaders in their fields, and their products and services have world reputation.

24 2009 Biomanufacturing of the Cell Mechanical Environment

KU Leuven is a hub for research and education in the field of biomedical technology. The university witnesses many interdisciplinary initiatives between the engineering and biomedical sciences (as e.g. coordinated by the Leuven Medical Technology Center, The master programme in biomedical technology ( provides a broad, high quality education, as was also recently confirmed by an independent accreditation committee, and at the same time guarantees a stable offer of highly talented PhD students for biomedical engineering research.
You will be a member of the Biomechanics section (, being a multidisciplinary group with broad expertise in terms of computational and experimental biomechanics of human structure and function, and collaborating extensively with various biomedical sciences research groups. Its research activities span different length scales, from the human body down to intracellular scales. It focuses among others on mechanobiology, a field that studies the interaction between the mechanical micro environment and cell fate. In order to do so, an integrative, interdisciplinary approach is being followed, consisting of a direct coupling between (multiscale) computer modelling and (in vitro) experiments. One of its applications is tissue engineering, a field that has gained conisderable attention at KU Leuven ( see e.g. In addition, the department has built up a strong, international reputation in terms of technologies, relevant for biomanufacturing, such as additive manufacturing and micro-electro-mechanical systems (MEMS), being research subjects of the Production Processes ( and Micro and Precision Engineering ( research groups. Both are already active within the biomedical engineering field.
Each of these research groups boasts an extensive national and international network, in academia as well as industry, its research being funded by a wide portfolio of projects (among others European funding within the Seventh Framework programme and the European Research Council). Apart from the groups’ own research infrastructure, central, shared Research Facilities are being provided for among others nanotechnology and precision measurements (
By means of this academic position in biomanufacturing, the department of Mechanical Engineering wants to strengthen its research in the tissue engineering field, by creating synergies between the more fundamental mechanobiology research on the one hand, and more applied, technology-driven research on additive manufacturing and micro engineering on the other hand.



You will be expected to develop an excellent research program in biomanufacturing that is complementary to and in collaboration with the already mentioned research groups at the Department of Mechanical Engineering, and related groups at KU Leuven. Research will focus on the development of innovative hardware technology for the biomanufacturing of living tissues that emphasises mechanobiological principles. This technology must enable to control geometrical and mechanical cues at submicron scale and to recreate cell mechanical environments that mimic the native ones, in order to modulate cell fate. At the same time, technology must result in translating and scaling to tissue sizes that are relevant for the study of tissue function, disease and regeneration.

You must be able to acquire competitive research funding, set up national and international research collaborations, supervise PhD students and generate scientific output that adheres to the highest international standards.


You ensure high-quality education within the Bachelor and/or Master programs of Mechanical Engineering and Biomedical Engineering of the Faculty of Engineering, with a clear commitment for the quality of the programme as a whole. You also contribute to the pedagogic project of the faculty through the supervision of master theses and as a promoter of PhD students.

You develop your teachings in accordance with KU Leuven’s vision on activating and researched-based education and make use of the possibilities for the educationalist professionalisation offered by the faculty and the university.


The Department of Mechanical Engineering has an excellent track record in translating research findings into products and services. The candidate is expected to explore collaboration with industrial partners as well.


You have a PhD in engineering with an emphasis in biomanufacturing and that demonstrates experience with interdisciplinarity at the interface between engineering and biomedical sciences.

You have a strong research profile. The quality of your research is proven by publications in international, leading journals. International experience is an important advantage.

If you have recently been admitted to the degree of doctor, it is important that you support your research and growth potential with academic references.

You have demonstrable qualities related to academic education. Teaching experience is an advantage.

You possess organisational skills and have a cooperative attitude. You also possess leadership capacities within a university context.

An excellent command of English is required. KU Leuven provides courses in academic English.

The administrative and educational language at KU Leuven is Dutch. If, at your appointment, you do not speak Dutch at all or do not speak it well, KU Leuven will provide a training offer that must equip you to be able to teach in Dutch within three years. If your teaching assignment is completely in a language other than Dutch, then it is expected that you have mastered the Dutch language to a level that will allow you to participate in the administrative meetings.


We are offering full-time employment in an intellectually challenging and interdisciplinary environment. KU Leuven is a research-intensive, internationally oriented university that carries out both fundamental and applied scientific research. It is highly inter- and multidisciplinarily focused and strives for international excellence. In this regard, it actively works together with research partners in Belgium and abroad. It provides its students with an academic education that is based on high-quality scientific research.

You will work in Leuven, a historic, dynamic and lively city located in the heart of Belgium, within 20 minutes from Brussels, the capital of the European Union, and less than two hours from Paris, London and Amsterdam.

Depending on your record and qualifications, you will be appointed to or tenured in one of the grades of the senior academic staff: assistant professor, associate professor, professor or full professor. In principle, junior researchers are appointed as assistant professor on the tenure track for a period of 5 years; after this period and a positive evaluation, they are permanently appointed (or tenured) as an associate professor.


For more information please contact Prof. dr. ir. Dominiek Reynaerts, tel.: +3216322640, mail:
For problems with your online application, please contact

THÈSE Dispositifs miniaturiés pour l’analyse de biomolécules : cas du monoxyde d’azote

Déposé le : 04/08/2013

Unité de Pharmacologie Chimique et Génétique et d’Imagerie
Chimie ParisTech – UMR CNRS 8151 – INSERM 1022- Université Paris Descartes
Equipe Synthèse, Electrochimie, Imagerie et Systèmes Analytiques pour le Diagnostic
Chimie ParisTech, 11, rue Pierre et Marie Curie 75231 PARIS Cedex 05

Keywords: monoxyde d’azote, nitrosothiols, catalyse de décomposition, système miniaturisé, méthodes séparatives, électrochimie


Profil des candidat(e)s :

  • Niveau M2 ou ingénieur, diplôme étranger équivalent obtenu dans l’année universitaire 2012-2013
  • Compétences souhaitées : formation de base en biochimie et chimie analytique

Etablissement d’accueil : Chimie Paris Tech

Contacts :

  • Dr. Fethi Bedioui (, tél. 33 (0)
  • Pr. Anne Varenne ( tel. 33 (0)
  • Dr Sophie Griveau ( tél. 33 (0)
  • Dr Fanny d’Orlyé ( tel. 33 (0)

Contexte et challenges :

Le monoxyde d’azote, NO, est produit dans le corps humain au niveau vasculaire, neuronal et du système immunitaire, agissant comme messager cellulaire (régulation du tonus vasculaire, neurotransmission) et agent cytotoxique (réponse immunitaire)[i],[ii],[iii]. Ses effets biologiques dépendent de ses taux de production, une surproduction ou sous-production induisant des dysfonctionnements biologiques tels l’angine de poitrine[iv]. Aussi, une meilleure compréhension des rôles de NO requiert des mesures sensibles, sélectives et en temps réel de NO ou de ses métabolites biologiques. NO est cependant un radical possédant une durée de vie assez courte in vivo et, dans le système vasculaire, une large partie du NO produit étant convertie en différents S-nitrosothiols (RSNOs), par réaction avec des petits thiols tels que la cystéine et le gluthathion et les fonctions thiols des protéines telles que l’albumine (Figure 1). Les RSNOs sont relativement stables in vivo et apparaissent comme des formes de stockage et de transport de NO dans le sang et le plasma, permettant à NO de diffuser in vivo sur des distances importantes.

L’évaluation des taux de RSNOs in vivo est extrêmement difficile à cause de la diversité des RSNOs formés, de faible et haut poids moléculaires, et de la présence d’autres biomolécules potentiellement interférentes. La seconde difficulté concerne la dégradation des RSNOs une fois extraits de leur environnement biologique naturel, nécessitant des précautions dans la préparation des échantillons. Malgré des avancées techniques et méthodologiques significatives concernant la détection de RSNOs [v],[vi],[vii],[viii], la quantification et la détection simultanée de NO et des thiols libérés constitue un challenge, car les RSNOs sont détectés indirectement en les décomposant en NO et thiols (oxydé et réduit). Actuellement il n’existe pas de méthode standard pour détecter les diverses formes de RSNOs présents dans les fluides biologiques.

Ainsi nous proposons l’élaboration d’un dispositif miniaturisé doté d’un procédé de décomposition original des RSNOs et d’un détecteur sensible et sélectif permettant la détection et la quantification des différentes formes de RSNOs de haut et bas poids moléculaires dans les fluides biologiques complexes.

Projet :

L’objectif du projet est de concevoir un dispositif analytique miniaturisé permettant la séparation simultanée, la détection et la quantification des RSNOs de faible (<500 Da) et haut poids moléculaires (>10 kDa) présents dans des fluides biologiques ainsi que la caractérisation de leurs produits de décomposition, RSH (ou RSSR sous sa forme oxydée) et NO.

Les méthodes électrocinétiques capillaires classiques ont montré leur intérêt pour le suivi in vitro de réactions de dégradation moléculaires des RSNOs (S-nitroso-cystéine[ix], -glutathion[x],[xi]), permettant la séparation en milieu libre et la détection UV en ligne des trois métabolites RSNO, RSH et RSSR dans des échantillons biologiques. Des mélanges modèles de différents thiols de faibles poids moléculaires (homocystéine, cystéine et glutathion) et de leurs dérivés S-nitrosylés ont également pu être séparés dans les mêmes conditions[xii]. Enfin, la S-nitroso-albumine a été caractérisée par électrophorèse capillaire en gel de dextran avec détection de fluorescence[xiii]. Néanmoins les familles de protéines S-nitrosylées de hauts poids moléculaires présentes dans des échantillons biologiques n’ont pas pu être séparées dans ces conditions.

Dans le cadre de ce projet de thèse, nous proposons de transposer et d’optimiser cette approche en microcanal pour développer des analyses ultra-rapides (< 1min), compatibles avec la durée de vie de NO, faiblement consommatrices en échantillons biologiques, et permettant l’injection séquentielle ou le traitement en parallèle de plusieurs échantillons. NO et les donneurs de NO sont électroactifs et peuvent être directement oxydés ou réduits sur différentes électrodes. Ce travail s’orientera donc vers le couplage des méthodes électrocinétiques à une détection électrochimiques sélective, sensible et ne nécessitant aucune étape de dérivation préalable. Avec la détection électrochimique, il sera par ailleurs possible d’intégrer les électrodes dans le microcanal pendant le procédé de microfabrication[xiv],[xv], conduisant ainsi à des systèmes microfluidiques entièrement intégrés[xvi],[xvii],[xviii],[xix].

Ce type de dispositif (Figure 2) a déjà fait ses preuves pour l’étude du comportement dynamique de donneurs de NO[xx]. Dans le cadre de cette thèse, nous envisageons l’étude des RSNOs comme systèmes modèles de transport et de délivrance de NO afin de mieux comprendre les mécanismes in vivo. Leur coupure homolytique en NO et thiol sera induite selon plusieurs voies : (1) photochimique (2) catalytique (par Cu+) ou (3) thermique. Cette décomposition sera réalisée soit dans le puits en entrée de canal, soit à une distance finie du canal, à proximité du dispositif électrochimique de détection. Une détection ampérométrique directe et/ou indirecte pourra être envisagée dans une configuration originale à trois électrodes permettant de détecter et quantifier simultanément, après leur séparation, les RSNOs et/ou leurs produits de dégradation, RSH (ou RSSR sous sa forme oxydée) et NO. Le dispositif de détection des RSNOs fera donc l’objet d’un travail de conception important.

Les conditions optimales de prélèvement, de conservation et de pré-traitement des échantillons biologiques avant leur analyse seront étudiées afin d’éviter des artefacts de mesure liés à des dégradations et/ou formations d’espèces lors de ces différentes étapes.

Le travail sera d’abord mené sur des échantillons artificiels, afin d’optimiser les paramètres de séparation des différents RSNOs de bas et haut poids moléculaires. Puis le système développé sera appliqué à l’analyse d’échantillons biologiques réels tels que le plasma et le sang.

  • [i] L. J. Ignarro et al., J. Pharmacol. Exp. Ther., 218 (1981) 739-749.
  • [ii] L. J. Ignarro et al. , Proc. Natl. Acad. Sci. U. S. A., 84 (1987) 9265-9269.
  • [iii] R. F. Furchgott, Angew. Chem.-Int. Edit., 38 (1999) 1870-1880.
  • [iv] G. Thomas, Medicinal Chemistry, An introduction, Wiley, 2007.
  • [v] D. Giustarini at al., J. Chromatogr. B, 851 (2007) 124-139.
  • [vi] A. Gow et al., J. Chromatogr. B, 851 (2007) 140-151.
  • [vii] E. Bramanti, et al., Life Sciences, 88 (2011) 126-129.
  • [viii] E. Bechtold and S. B. King, Antioxid. Redox Signaling, 17 (2012) 981-991.
  • [ix] F. Misiti et al., BBRC, 294 (2002) 829-834.
  • [x] C. Carru et al., J. Chromatogr. A, 1017 (2003) 233-238.
  • [xi] I. Messana et al., Electrophoresis, 21 (2000) 1606-1610.
  • [xii] J. S. Stamler et J. Loscalzo, Anal. Chem., 64 (1992) 779-785.
  • [xiii] S. Wang et al., J. Chromatogr. A, 1218 (2011) 6756-6762.
  • [xiv] D. B. Gunasekara et al., Electrophoresis, 32 (2011) 832-837.
  • [xv] M. K. Hulvey et al., Anal. Chem., 82 (2010) 1608-1611.
  • [xvi] R. S. Martin, Methods Mol. Biol., 339 (2006) 85-112.
  • [xvii] P. Kuban and P. C. Hauser, Electrophoresis, 30 (2009) 3305-3314.
  • [xviii] M. Pumera, et al., TrAC Trends Anal. Chem., 25 (2006) 219-235.
  • [xix] C. D. Garcia and C. S. Henry (2007) Coupling Electrochemical detection with microchip capillary electrophoresis. CRC, Boca Raton, pp265-297.
  • [xx] B. Gunasekara, Anal. Bioanal. Chem., 403 (2012) 2377-2384.

POSTDOC Research associate in biological fluid mechanics

Déposé le : 18/03/2013

Applications are invited for a postdoctoral position in the group of Dr E. Lauga who will join the faculty at DAMTP on July 1 2013. The position is focused on theoretical low-Reynolds-number fluid dynamics problems relevant to biology and medicine. In addition to biological fluid mechanics, Dr Lauga has interests in the flow of complex fluids, soft condensed matter, and mathematical modelling in continuum physics.


Déposé le : 18/03/2013

Vacancy reference: LE26242
Salary: £27,854 p.a. – £36,298 p.a.

Applications are invited for a postdoctoral position in the group of Dr E. Lauga who will join the faculty at DAMTP on July 1 2013. The position is focused on theoretical low-Reynolds-number fluid dynamics problems relevant to biology and medicine. In addition to biological fluid mechanics, Dr Lauga has interests in the flow of complex fluids, soft condensed matter, and mathematical modelling in continuum physics.
The successful applicant will hold (or be about to complete) a Ph.D. in Applied Mathematics, Physics, Biological Physics, or a closely related field and will join a rapidly expanding effort in biological physics and mathematical biology within DAMTP. The candidate will have an extensive mathematical training with a strong track-record of research in the field of fundamental fluid dynamics or theoretical biological physics, and an aptitude for computer programming.
For further details about the group, please consult Dr Lauga’s current webpage ( or send an email to
The salary will be on the standard University scale in the range £27,854 to £36,298 per annum depending on previous research experience.
Applications should be sent electronically to Doris Allen, Department of Applied Mathematics and Theoretical Physics (, and should include: a CV; form CHRIS/6 (parts I and III – downloadable from; the contact information for 2 referees; and a short summary of prior research accomplishments and statement of future research interests.
The closing date for applications is 1 May 2013 with a start date preferably in September 2013.

Limit of tenure: up to two years
Closing date for applications: 1 May 2013