GDR Micro Nano Fluidique

Offres d'emploi

Post doctoral position in LIMMS/CNRS-IIS – Microfluidic devices for Cancer cell research

Déposé le : 10/02/2015

Détail
Reference: ABG-60944
Offer type: job

Contract: Contract/Project
Salary range: ≥ 25,000 and < 35,000€ annual gross
Employer: LIMMS/CNRS-University of Tokyo – Institute of Industrial Science
Workplace: Tokyo – JAPAN
Skill area: Biology, Medicine, Health – Biomolecules, pharmacology, therapeutics – Biology, Medicine, Health
Métier : Research and development
Posting date: 2/6/2015
Application deadline: 2/28/2015
The Laboratory for Integrated Micro Mechatronic Systems (LIMMS) is a joint laboratory between the Centre National de la Recherche Scientifique (CNRS) and the Institute of Industrial Science (IIS), the University of Tokyo. It was founded in 1995 to conduct international cooperative research projects in the field of micro-nanomechatronics and was upgraded to UMI (Unité Mixte Internationale) of CNRS as well as an international collaborative research center of IIS. LIMMS has 20 years of experience in international cooperative research and has welcomed more than 150 researchers from France.More information on http://limmshp.iis.u-tokyo.ac.jp/

Mission:

2-years position starting in October 2015
Principal investigator at the Institute of Industrial Science (IIS), the University of Tokyo is interested in exploring the challenges and opportunities of Microfluidics in its application to cell/tissue engineering, especially for the cancer including metastasis, angiogenesis , et al. In the experience in microfluidic cell-culture devices they confirmed the potential benefit of microfluidic environment to cell/tissue culture for analytical purposes that could become one of the alternatives to animal testing. They also have developed a couple of key technologies such as, biomaterial science, microtissue units, etc. A new comer to this project is expected to extend this work to advanced microfluidic techniques for cancer cell research. The research from the aspect of mathematical and biophysical/mechanics research fields will be also recommended. The laboratory is well equipped with the apparatus for mammalian cell culture and analysis as well as the full-set of PDMS-based softlithography processes. The project will be in the SMMiL-E initiative framework aiming to promote the fusion between BioMEMS technology of IIS and the structured research against Cancer carried out in SIRIC ONCO-Lille, in France. The research will be done in Japan with close relationship with biology lab and clinician teams in Lille (Centre Oscar Lambret, Lille Biology Institute, U908 INSERM ).

Candidates profile:

Candidates are expected to be skillful in cell culture and biological analysis, and have much interest in microfluidics as well as device fabrication. A challenging sprit would help a lot for tackling into this interdisciplinary and cutting-edge research area.

Please send to limmsadm (at) iis.u-tokyo.ac.jp
with email subject : « LIMMS_PD_2015-2-YOURNAME »
– Your CV (including education & professional history, publication list, reference(s) and photo)
– Letter of Motivation to LIMMS, and the Statement of Purposes (your future plan).
– Selected publication of yours would be helpful


Post doctoral position in LIMMS/CNRS-IIS – Developpement of a microfluidic biochip for induced pluripotent stem (iPS) cells differention

Déposé le :

Détail

Reference: ABG-60891
Offer type: job

Contract: Contract/Project
Salary range: ≥ 25,000 and < 35,000€ annual gross
Employer: LIMMS/CNRS – University of Tokyo, IIS (Japan)
Workplace: TOKYO – JAPAN
Skill area: Biology, Medicine, Health – Engineering
Métier : Research and development
Posting date: 2/4/2015
Application deadline: 2/28/2015
The Laboratory for Integrated Micro Mechatronic Systems (LIMMS) is a joint laboratory between the Centre National de la Recherche Scientifique (CNRS) and the Institute of Industrial Science (IIS), the University of Tokyo, based in Japan. It was founded in 1995 to conduct international cooperative research projects in the field of micro-nanomechatronics and was upgraded to UMI (Unité Mixte Internationale) of CNRS as well as an international collaborative research center of IIS. LIMMS has 20 years of experience in international cooperative research and has welcomed more than 150 researchers from France.

Mission:

The 2 year postdoctoral fellowship position will be based in the the Institute of Industrial Science of the University of Tokyo, as a collaboration between Eric Leclerc (LIMMS-Japan, organ on chip), Pr. Sakai (Univ. Tokyo, liver tissue engineering, iPS biology) and Pr. Fujii (Univ. Tokyo, applied microfluidic).

The drug-induced hepatotoxicity (or DILI for Drug-Induced Liver Injury) is a worldwide issue
for clinicians, the pharmaceutical industry and regulatory agencies of the drug. The drug hepatotoxicity is the first acute toxicity leading to death or liver transplantation failure. The hepatotoxicity is also the leading cause of attrition of a large number of therapeutic molecules and their withdrawal from the market. This is the reason why it is essential to develop tools to assess the hepatotoxicity of drug candidates as early as possible during their development. Many models exist at present to estimate the toxicity of drugs (animal models, cell lines, primary hepatocytes). But these models exhibit many limitations, as we will describe later. The project iPS on chip aim to develop, from hepatocytes derived from induced pluripotent stem cells (iPS), a microfluidic culture model that will allow a better stable and reproducible differentiation patterns for assessment xenobiotic toxicity.

The context is the regeneration of tissues and the substitution of bioartificial organs, predictive toxicology, 3D tissue engineering, to overcome the deficiencies of the biological systems, are problems using new multi-disciplinary approaches proposed by Pr Fujii and Pr Sakai. In this frame we propose an integrative research procedure, to improve the iPS differentiation using microfluidic devices.

Research topic
We will need to develop and explore different types of biochips. We will need to optimize the three-dimensional microfluidic biochips suitable for dynamic liver iPS cell culture. For that purpose, BioMEMS recent progress will be implemented in the device conception. It included the consideration of new approach in micro engineering, biomaterials and sensors technology to functionalize the biochips. Then, in this work, we will have to adapt the protocol that allows the cultivation of iPS in the new biochip. To do this, the effects of extracellular matrices, the inoculation density of cells, the co-culture types, the perfusion rates in the biochips, the sequences and doses of additives involved in the differentiation will be tested. We will analyze the pertinence of differentiation in parallel to a Petri. Biological assays to validate the hepatic differentiation will include investigations of mRNA levels analyzed by RTqPCR or microarrays, hepatic biomarkers detection (ALB, AFP), epigenetics analysis and proteomics. For that purpose miniaturization concept and design issues will be important features to allow the best control of endocrine and paracrine factors and the relevant analysis at key time points.

Candidates profile:

Doctor graduate researcher with skills in liver cell biology, stem cell biology, bio engineering, pharmacology

Please send to limmsadm(at)iis.u-tokyo.ac.jp with email subject LIMMS_PD_2015-1-YOURNAME:
– Curriculum vitae (including education & professional history, publication list, reference(s) and photo)
– Motivation letter to LIMMS, and the Statement of Purposes (your future plan).
– One reference and/or recommendation letter


POSTDOC Alteration of the microcirculation of red blood cells for two major genetic diseases

Déposé le : 13/01/2015

Détail

Two of the most important genetic diseases of red blood cells (RBCs), namely sickle cell anemia – a very handicapping and the most prevalent generic disease in the world- and hereditary spherocytosis are both characterized by an increase in the cell rigidity The resulting lack of deformability occurs either because of the formation of rigid fibers of haemoglobin S in the cytoplasm or via changes in membrane proteins which in turn alter the cytoskeleton resulting in a spherical cell shape. These changes result in problems of circulation of RBCs in narrow capillaries and through the thin slits of splenic sinusoids- situations where the RBCs may be subject to very strong deformations. In spite of a lot of work on blood flow, the role of the deformation parameters, that is to say, the mechanical properties of RBCs that govern their behavior in micro-flow, is poorly understood.

In this project, we tackle the challenge of understanding the dynamics of RBCs in the microcirculation in the context of sickle cell anemia and hereditary spherocytosis. We shall develop a combination of micro and nano techniques and in vitro approaches to study the mechanical properties of the pathological RBCs, as well as their individual and collective dynamics in biomimetic microflows.

The postdoc will work on the development of complex Micro/Nano PDMS fluidic channels which will have specific topography and/or chemistry and will be involved in cell behavior measurements.

Hosting lab: Centre Interdisciplinaire de nanoscience de Marseille, CINaM,
France

Postdoc duration : 2 years
Starting time : As soon as possible

Project leader: Annie Viallat
Supervisor: Anne Charrier

For further questions and application, please contact Anne Charrier at
charrier@cinam.univ-mrs.fr


THÈSE Deux problèmes d’hydrodynamique: débitmètre oscillant, dynamique de gouttes dans des microcanaux.

Déposé le : 25/06/2014

Détail

Sur le plan fondamental, les travaux se font au MMN, et la question posée est de savoir pourquoi les microgouttes sont ralenties et se recentrent spontanément dans des microcanalux, avec des désaccords de plusieurs ordres de grandeur par rapport à la théorie; on exploite ce phénomène pour faire de l’assemblage colloidal, l’objectif étant de faire des nouveaux matériaux capables, par exemple, de piéger la lumière dans des cavités.
Sur le plan industriel, les travaux se font dans l’entreprise, et il s’agit d’étudier des phénomènes d’oscillation hydrodynamiques, permettant de concevoir un nouveau débitmètre pour applications médicales.Dans ce volet, il y aurait une partie expérimentation, et une partie modélisation numérique.

Thèse faisant l’objet d’une demande CIFRE.
Pour plus de renseignements contacter Stéphanie Le Lay sur stephanie.le-lay@espci.fr


THÈSE Sédimentation de particules en écoulement turbulent

Déposé le :

Détail

Laboratoire IUSTI–UMR 7343 CNRS–AixAMarseille Université
Directrice de thèse : Laurence Bergougnoux
Codirecteurs : G. Bouchet, E. Guazzelli
Spécialité : Mécanique et physique des fluides

Les écoulements de particules sont présents dans un grand nombre de processus naturels ou industriels. Les transports de sédiments dans les rivières et estuaires, de polluants dans l’atmosphère, la bioconvection du zooplancton, les courants de gravité et de turbidité près des rivages côtiers, les écoulements pyroclastiques lors d’éruptions volcaniques en sont quelques exemples dans le domaine de l’environnement. Dans l’industrie  les procédés impliquant des écoulements de particules sont très nombreux : réacteurs à lits fluidisés, traitement des eaux, industries agroalimentaires, pharmaceutiques et cosmétiques. Dans tous ces exemples, la sédimentation des particules est un phénomène dominant, complexe et fascinant, qu’il est important de contrôler et de comprendre de façon fondamentale.

De  nombreuses  avancées  ont  été  réalisées  à  bas  nombres  de  Reynolds   sans  inertie  et  en particulier dans le Groupe Ecoulements de Particules  GEP du laboratoire IUSTI – UMR 7343 CNRS – AixWMarseille Université [6, 2, 3, 5]. Mais le régime inertiel et turbulent n’a reçu que peu d’attention, tant du côté expérimental  [1, 7] que du côté de la simulation numérique  [4]. Les quelques  travaux existants semblent suggérer une vitesse moyenne de sédimentation supérieure à la vitesse terminale de chute d’une particule et des régions plus concentrées dans les zones de faible vorticité. Mais cela reste à confirmer et une étude plus poussée de la structure de la suspension reste à faire.

Le sujet de  thèse que nous proposons se  focalise sur la compréhension des effets collectifs entre particules  sous  l’effet  de  la  gravité  en  régime  turbulent.  Il  s’agira  d’étudier  la  sédimentation  de particules isolées  sphère, sphéroïde, fibre…), de nuage de particules  goutte, jet), de suspension plus ou  moins  concentrée,  sur  un  écoulement  tourbillonnaire.  Dans  un  premier  temps,  cette  étude expérimentale sera menée sur un écoulement bidimensionnel généré par électroWconvection  forces de  Laplace).  L’écoulement  sera  caractérisé  par  des  techniques  de  PIV   Particle Image  Velocimetry) pour la partie  fluide, et par  PTV   Particle Tracking Velocimetry) pour le  suivi des particules  solides. Dans  un  second  temps,  nous  passerons  à  une  turbulence  tridimensionnelle  au  sein  d’un  canal  de sédimentation équipé d’une grille active.

Nous comptons aussi développer une approche numérique en collaboration avec Eckart Meiburg, Professeur au Department  of Mechanical Engineering  de  l’Université  de  Californie à Santa  Barbara des  liens existent  déjà entre  le IUSTI et  ce  département), Markus Uhlmann   Karlsruhe Institute  of Technology et avec Eric Climent, Professeur à l’Institut de Mécanique des Fluides de Toulouse.

————————————————————

[1] A. Aliseda, A. Cartelier, F. Hainaux and J. C. Lasheras, “Effect of preferential concentration on the settling velocity of heavy particles in homogeneous isotropic turbulence”, J. Fluid Mech. 468, 77 – 2002.

[2] L. Bergougnoux, S. Ghicini, E. Guazzelli, and E. J. Hinch, “Spreading fronts and fluctuations in sedimentation”, Phys. Fluids 15, 1875W1887  – 2003.

[3] L. Bergougnoux, E. Guazzelli, “NonWPoisson statistics of settling spheres”, Phys. Fluids 21 091701 – 2009.

[4] T. Bosse, L. Kleiser and E. Meiburg, “Small particles in homogeneous turbulence : Settling velocity enhancement by twoWway coupling”, Phys. Fluids 18, 027102  – 2006.

[5] D. Chehata Gomez, L. Bergougnoux, E. Guazzelli, and E. J. Hinch, “Fluctuations and stratification in sedimentation of dilute suspensions of spheres”, Phys. Fluids 21 093304  – 2009.

[6] É. Guazzelli, “Evolution of particleWvelocity correlations in sedimentation”, Phys. Fluids 13, 1537 – 2001.

[7] T. S. Yang and S. S. Shy, “The settling velocity of heavy particles in an aqueous nearWisotropic turbulence”, Phys. Fluids 15, 868  – 2003.

Débouchés : Recherche académique et industrielle