GDR Micro Nano Fluidique

Offres d'emploi

THÈSE Dispositifs miniaturiés pour l’analyse de biomolécules : cas du monoxyde d’azote

Déposé le : 04/08/2013

Unité de Pharmacologie Chimique et Génétique et d’Imagerie
Chimie ParisTech – UMR CNRS 8151 – INSERM 1022- Université Paris Descartes
Equipe Synthèse, Electrochimie, Imagerie et Systèmes Analytiques pour le Diagnostic
Chimie ParisTech, 11, rue Pierre et Marie Curie 75231 PARIS Cedex 05

Keywords: monoxyde d’azote, nitrosothiols, catalyse de décomposition, système miniaturisé, méthodes séparatives, électrochimie

Détail

Profil des candidat(e)s :

  • Niveau M2 ou ingénieur, diplôme étranger équivalent obtenu dans l’année universitaire 2012-2013
  • Compétences souhaitées : formation de base en biochimie et chimie analytique

Etablissement d’accueil : Chimie Paris Tech

Contacts :

  • Dr. Fethi Bedioui (fethi-bedioui@chimie-paristech.fr), tél. 33 (0) 1.44.27.64.89
  • Pr. Anne Varenne (anne-varenne@chimie-paristech.fr) tel. 33 (0) 1.43.25.18.76
  • Dr Sophie Griveau (sophie-griveau@chimie-paristech.fr) tél. 33 (0)1.44.27.64.93
  • Dr Fanny d’Orlyé (fanny-dorlye@chimie-paristech.fr) tel. 33 (0) 1.44.7.64.92

Contexte et challenges :

Le monoxyde d’azote, NO, est produit dans le corps humain au niveau vasculaire, neuronal et du système immunitaire, agissant comme messager cellulaire (régulation du tonus vasculaire, neurotransmission) et agent cytotoxique (réponse immunitaire)[i],[ii],[iii]. Ses effets biologiques dépendent de ses taux de production, une surproduction ou sous-production induisant des dysfonctionnements biologiques tels l’angine de poitrine[iv]. Aussi, une meilleure compréhension des rôles de NO requiert des mesures sensibles, sélectives et en temps réel de NO ou de ses métabolites biologiques. NO est cependant un radical possédant une durée de vie assez courte in vivo et, dans le système vasculaire, une large partie du NO produit étant convertie en différents S-nitrosothiols (RSNOs), par réaction avec des petits thiols tels que la cystéine et le gluthathion et les fonctions thiols des protéines telles que l’albumine (Figure 1). Les RSNOs sont relativement stables in vivo et apparaissent comme des formes de stockage et de transport de NO dans le sang et le plasma, permettant à NO de diffuser in vivo sur des distances importantes.

L’évaluation des taux de RSNOs in vivo est extrêmement difficile à cause de la diversité des RSNOs formés, de faible et haut poids moléculaires, et de la présence d’autres biomolécules potentiellement interférentes. La seconde difficulté concerne la dégradation des RSNOs une fois extraits de leur environnement biologique naturel, nécessitant des précautions dans la préparation des échantillons. Malgré des avancées techniques et méthodologiques significatives concernant la détection de RSNOs [v],[vi],[vii],[viii], la quantification et la détection simultanée de NO et des thiols libérés constitue un challenge, car les RSNOs sont détectés indirectement en les décomposant en NO et thiols (oxydé et réduit). Actuellement il n’existe pas de méthode standard pour détecter les diverses formes de RSNOs présents dans les fluides biologiques.

Ainsi nous proposons l’élaboration d’un dispositif miniaturisé doté d’un procédé de décomposition original des RSNOs et d’un détecteur sensible et sélectif permettant la détection et la quantification des différentes formes de RSNOs de haut et bas poids moléculaires dans les fluides biologiques complexes.

Projet :

L’objectif du projet est de concevoir un dispositif analytique miniaturisé permettant la séparation simultanée, la détection et la quantification des RSNOs de faible (<500 Da) et haut poids moléculaires (>10 kDa) présents dans des fluides biologiques ainsi que la caractérisation de leurs produits de décomposition, RSH (ou RSSR sous sa forme oxydée) et NO.

Les méthodes électrocinétiques capillaires classiques ont montré leur intérêt pour le suivi in vitro de réactions de dégradation moléculaires des RSNOs (S-nitroso-cystéine[ix], -glutathion[x],[xi]), permettant la séparation en milieu libre et la détection UV en ligne des trois métabolites RSNO, RSH et RSSR dans des échantillons biologiques. Des mélanges modèles de différents thiols de faibles poids moléculaires (homocystéine, cystéine et glutathion) et de leurs dérivés S-nitrosylés ont également pu être séparés dans les mêmes conditions[xii]. Enfin, la S-nitroso-albumine a été caractérisée par électrophorèse capillaire en gel de dextran avec détection de fluorescence[xiii]. Néanmoins les familles de protéines S-nitrosylées de hauts poids moléculaires présentes dans des échantillons biologiques n’ont pas pu être séparées dans ces conditions.

Dans le cadre de ce projet de thèse, nous proposons de transposer et d’optimiser cette approche en microcanal pour développer des analyses ultra-rapides (< 1min), compatibles avec la durée de vie de NO, faiblement consommatrices en échantillons biologiques, et permettant l’injection séquentielle ou le traitement en parallèle de plusieurs échantillons. NO et les donneurs de NO sont électroactifs et peuvent être directement oxydés ou réduits sur différentes électrodes. Ce travail s’orientera donc vers le couplage des méthodes électrocinétiques à une détection électrochimiques sélective, sensible et ne nécessitant aucune étape de dérivation préalable. Avec la détection électrochimique, il sera par ailleurs possible d’intégrer les électrodes dans le microcanal pendant le procédé de microfabrication[xiv],[xv], conduisant ainsi à des systèmes microfluidiques entièrement intégrés[xvi],[xvii],[xviii],[xix].

Ce type de dispositif (Figure 2) a déjà fait ses preuves pour l’étude du comportement dynamique de donneurs de NO[xx]. Dans le cadre de cette thèse, nous envisageons l’étude des RSNOs comme systèmes modèles de transport et de délivrance de NO afin de mieux comprendre les mécanismes in vivo. Leur coupure homolytique en NO et thiol sera induite selon plusieurs voies : (1) photochimique (2) catalytique (par Cu+) ou (3) thermique. Cette décomposition sera réalisée soit dans le puits en entrée de canal, soit à une distance finie du canal, à proximité du dispositif électrochimique de détection. Une détection ampérométrique directe et/ou indirecte pourra être envisagée dans une configuration originale à trois électrodes permettant de détecter et quantifier simultanément, après leur séparation, les RSNOs et/ou leurs produits de dégradation, RSH (ou RSSR sous sa forme oxydée) et NO. Le dispositif de détection des RSNOs fera donc l’objet d’un travail de conception important.

Les conditions optimales de prélèvement, de conservation et de pré-traitement des échantillons biologiques avant leur analyse seront étudiées afin d’éviter des artefacts de mesure liés à des dégradations et/ou formations d’espèces lors de ces différentes étapes.

Le travail sera d’abord mené sur des échantillons artificiels, afin d’optimiser les paramètres de séparation des différents RSNOs de bas et haut poids moléculaires. Puis le système développé sera appliqué à l’analyse d’échantillons biologiques réels tels que le plasma et le sang.

  • [i] L. J. Ignarro et al., J. Pharmacol. Exp. Ther., 218 (1981) 739-749.
  • [ii] L. J. Ignarro et al. , Proc. Natl. Acad. Sci. U. S. A., 84 (1987) 9265-9269.
  • [iii] R. F. Furchgott, Angew. Chem.-Int. Edit., 38 (1999) 1870-1880.
  • [iv] G. Thomas, Medicinal Chemistry, An introduction, Wiley, 2007.
  • [v] D. Giustarini at al., J. Chromatogr. B, 851 (2007) 124-139.
  • [vi] A. Gow et al., J. Chromatogr. B, 851 (2007) 140-151.
  • [vii] E. Bramanti, et al., Life Sciences, 88 (2011) 126-129.
  • [viii] E. Bechtold and S. B. King, Antioxid. Redox Signaling, 17 (2012) 981-991.
  • [ix] F. Misiti et al., BBRC, 294 (2002) 829-834.
  • [x] C. Carru et al., J. Chromatogr. A, 1017 (2003) 233-238.
  • [xi] I. Messana et al., Electrophoresis, 21 (2000) 1606-1610.
  • [xii] J. S. Stamler et J. Loscalzo, Anal. Chem., 64 (1992) 779-785.
  • [xiii] S. Wang et al., J. Chromatogr. A, 1218 (2011) 6756-6762.
  • [xiv] D. B. Gunasekara et al., Electrophoresis, 32 (2011) 832-837.
  • [xv] M. K. Hulvey et al., Anal. Chem., 82 (2010) 1608-1611.
  • [xvi] R. S. Martin, Methods Mol. Biol., 339 (2006) 85-112.
  • [xvii] P. Kuban and P. C. Hauser, Electrophoresis, 30 (2009) 3305-3314.
  • [xviii] M. Pumera, et al., TrAC Trends Anal. Chem., 25 (2006) 219-235.
  • [xix] C. D. Garcia and C. S. Henry (2007) Coupling Electrochemical detection with microchip capillary electrophoresis. CRC, Boca Raton, pp265-297.
  • [xx] B. Gunasekara, Anal. Bioanal. Chem., 403 (2012) 2377-2384.

POSTDOC Research associate in biological fluid mechanics

Déposé le : 18/03/2013

Applications are invited for a postdoctoral position in the group of Dr E. Lauga who will join the faculty at DAMTP on July 1 2013. The position is focused on theoretical low-Reynolds-number fluid dynamics problems relevant to biology and medicine. In addition to biological fluid mechanics, Dr Lauga has interests in the flow of complex fluids, soft condensed matter, and mathematical modelling in continuum physics.

Détail

Déposé le : 18/03/2013

Vacancy reference: LE26242
Salary: £27,854 p.a. – £36,298 p.a.

Applications are invited for a postdoctoral position in the group of Dr E. Lauga who will join the faculty at DAMTP on July 1 2013. The position is focused on theoretical low-Reynolds-number fluid dynamics problems relevant to biology and medicine. In addition to biological fluid mechanics, Dr Lauga has interests in the flow of complex fluids, soft condensed matter, and mathematical modelling in continuum physics.
The successful applicant will hold (or be about to complete) a Ph.D. in Applied Mathematics, Physics, Biological Physics, or a closely related field and will join a rapidly expanding effort in biological physics and mathematical biology within DAMTP. The candidate will have an extensive mathematical training with a strong track-record of research in the field of fundamental fluid dynamics or theoretical biological physics, and an aptitude for computer programming.
For further details about the group, please consult Dr Lauga’s current webpage (http://maeresearch.ucsd.edu/lauga/) or send an email to e.lauga@damtp.cam.ac.uk.
The salary will be on the standard University scale in the range £27,854 to £36,298 per annum depending on previous research experience.
Applications should be sent electronically to Doris Allen, Department of Applied Mathematics and Theoretical Physics (dia20@damtp.cam.ac.uk), and should include: a CV; form CHRIS/6 (parts I and III – downloadable from http://www.admin.cam.ac.uk/offices/hr/forms/chris6); the contact information for 2 referees; and a short summary of prior research accomplishments and statement of future research interests.
The closing date for applications is 1 May 2013 with a start date preferably in September 2013.

Limit of tenure: up to two years
Closing date for applications: 1 May 2013


POSTDOC Trafic passif et actif de gouttes sur réseaux

Déposé le : 25/02/2013

The diversity of the systems, where traffic flows is involved calls for investigating their universal properties, thereby making the problem highly appealing from a fundamental perspective. In return, a generic comprehension of the mechanisms at play would drive the emergence of potential applications in many different fields of technological importance.

Détail

We look for a candidates for a postdoctoral position in Paris, at ESPCI, within our team (EC2M – Collective Effects in Soft Matter http://www.ec2m.espci.fr), to study experimentally

To be eligible, this application should be the first postdoctoral position of the candidate.
To obtain the position, the candidate will have to apply for the second round of a grant for which we successfully went through the first round. The rate of success for the second round is 25%. In case of success, the position is to be taken before june 2014 (and reasonably after summer 2013).
The file must be sent before the 7th of March at midnight!

Necessary documents include a CV. A letter of recommendation is also welcome.

Tout dossier reçu incomplet sera considéré comme inéligible et seuls les projets soumis avant la date limite via le site de soumission en ligne seront étudiés.

Titre du projet de recherche : Trafic passif et actif de gouttes sur réseaux

Sujet développé (à présenter en 1 page maximum en français ou en anglais, en précisant notamment le contexte, les objectifs, les méthodes et les résultats attendus)

Hundreds of natural and industrial processes ultimately rely on the transport of mobile agents in obstacle,or channel,networks. Prominent examples concern: particle filtration, blood flows in micro-vessels, droplet-based-microfluidics. In all these examples, passive particles are advected by external force fields and traffic through heterogeneous environment. A second important class of traffic phenomena deals with self-propelled agents. The most obvious realizations are the traffic flows of vehicle, and pedestrian in the urban networks but numerous similar processes take place in living systems at much smaller scales: bacteria in polluted soils and in host, or contaminated, organs; or the so-called cytoplasmic streaming, which ensures the transport of organelles through the eukaryotic cells along the cytoskeletal network.

The diversity of the systems, where traffic flows is involved calls for investigating their universal properties, thereby making the problem highly appealing from a fundamental perspective. In return, a generic comprehension of the mechanisms at play would drive the emergence of potential applications in many different fields of technological importance.

We intend to develop a generic understanding of the traffic dynamics in obstacle and channel networks. More precisely we shall concentrate on one well-identified axis ofresearch: Clogging. When the particle size compares to the typical width of the channels, or to the distance between obstacles, the traffic flows in fluidic network becomes a highly challenging problem. The particles then behave as “mobile clogs”, which locally modify the network conductivity. The local particle current then depends a » priori on the position of all the other particles in the network, making the problem nonlinear and nonlocal. We aim at providing the first quantitative experimental investigation of this problem in extended networks for both driven passive and active droplets.

To achieve these goals, we will take advantage of the expertise we have recently developed on the creation, the manipulation and the observation of a new kind of self-propelled agents, namely Swimming droplets. The postdoc will benefit from this expertise and, depending on the profile of the best candidate we will identify, he will contribute to the experimental work on one or both experiments and/or work on the modelisation of the above situations.

At the end of the day, we expect (i) to develop a unique analogic toolbox to investigate the collective dynamics of active and passive agents in heterogeneous media and (ii) a precise description of the traffic statistics both in ordered and disordered 2D networks.


PhD or ENG. « Microfluidic system for liquid-liquid extraction EXTRACTION »

Déposé le : 01/02/2013

In the framework of the ERC Advanced Grant REE-CYCLE, CEA, is looking for an PhD / or Engineer with a few years of experience (up to 2 years contract) (f/m) for »MICROFLUIDIC SYSTEM FOR LIQUID-LIQUID EXTRACTION »

Keywords: microfluidics, liquid-liquid extraction, instrumentation, vapor phase monitoring.

Détail

Research Topic: Rare earth elements are strategic materials that can be found nowadays in most consumer products, but which production processes produce very large amounts of harmful emissions. Hence 97% of its production currently occurs in China. The project REE-CYCLE (for Rare Earth Element reCYCling with Low harmful Emissions) will aim at developing more environmentally friendly processes, and could therefore have a huge societal, economic and environmental impact at a global level.

Such processes are based on liquid-liquid extraction. Liquid-liquid extraction, also known as solvent extraction and partitioning, is a method to separate compounds based on their relative solubilities in two different immiscible liquids, usually water and an organic solvent. It is an extraction of a substance from one liquid phase into another liquid phase. In order to develop a new process, one need to study new Liquid–liquid extraction components, associated phase diagrams and both from an experimental and theoritycal point of view. If performed in a traditional manner this can be a very lengthy process that can take up to few years per phase diagram. In REE-CYCLE we propose to address this search using microfluidic devices that should enable phase diagram studies in a matter of days or weeks.

This first ERC REE-CYCLE position aims at developing the core device on which the project will greatly depend: an integrated microfluidic chip that can perform liquid-liquid extraction of lanthanides in a very reproducible and controlled environment. The microfluidic chip and sensors will be embedded in a dedicated sealed package. The manipulation of fluids inside the channels will be enabled by pressure-driven flow controllers, in conjunction with high resolution flow sensors. All this architecture will be driven with a dedicated software interface, to control the laminar flows through the microfluidic chip and perform real-time measurements.

In this context, the objectives for this post-doctoral position are to:

  • Review existing vapor-phase sensors, and selection of appropriate technology relevant to the project targets, based upon validation tests that should be carried out in the first post-doc period.
  • On parallel, design of both the microfluidic liquid-liquid extraction chip, and its packaging.
  • Follow-up of the chip fabrication process (carried out in the 8inches wafer fab clean-rooms at CEA-LETI).
  • Improve/adapt the existing test bench overall setup and software interface.
  • Fluidic tests: by varying the flow rates in both channels, to control the exchanging time.

Context and collaboration: This work located in Grenoble, France, in the middle of the French Alps will benefit from a very multidisciplinary and international environment at the interface of three institutes:

This work will benefit from the prestigious framework of the ERC (http://erc.europa.eu) and namely the advanced project « REE-CYCLE » (PI, T. Zemb & co –PI JC Gabriel: linkedin.com/in/jcpgabriel). The objective of this job is key to the project and it will therefore place the candidate in a very special and core position.

The successful candidate will have access to many different pieces of knowledge, technologies, experiments as well as characterization tools, ranging from simple tabletop optical microscope to the latest generation synchrotron (ESRF, www.esrf.eu : for phase diagram studies). This position is therefore a great opportunity to enhance your knowledge base, your skills as well as your value on the job market.

Key Qualifications:

  • Successful candidates should have at minima an Engineering degree with few years of practical experience in a relevant field (microfluidics, micro- nanotechnology, applied physics, instrumentation, chemistry, etc) and a publication track record.
  • Candidate should have an interest and/or experience in microfluidics, different sensing methods, instrumentation development, as well as complementary simulation and design. Valuable. Hands-on experience with vapor –phase sensing methods, labview programming, microfabrication techniques is a plus.
  • Candidate should be available to interview at CEA/Grenoble and to start work ASAP.
  • Demonstrated ability to work on interdisciplinary projects and to quickly and efficiently acquire new technical skills outside the sphere of primary training.
  • A target-oriented, structured attitude and team spirit are absolutely necessary. Excellent communication skills and fluency in English are required (working language will be either French or English). We further expect creativity in problem solving and integrative skills.
  • Energetic, proactive, results-oriented, and self-motivated team player with strong organizational skills.
  • Ideal candidate will be adept at planning, prioritizing, multi-tasking, organizing, following through, and thinking on his/her feet.

We offer: This position comes with a very attractive benefit package, typical of French working environment. It will provide excellent working conditions in a highly interdisciplinary environment.

Starting date: The position is vacant and will start as soon as possible (duration up to 24 Months).

Position host location: CEA, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France

Application: Candidate should send as soon as possible CV, Cover Letter and References to: jean-christophe.gabriel@cea.fr

Immediate superior: Dr. Jean-Christophe P. Gabriel

Scientific and advisory board:

Name Technical part covered in the project Institution
V. Agache microfluidics design, fabrication and instrumentation CEA/LETI
J-C. Gabriel Microfabrication, vapor-phase sensors, sensing methods/tests. CEA
T. Zemb Phase diagrams, liquid-liquid extraction ICSM
R. Laucournet Recycling process LITEN